Fiber-type traps: revisiting common misconceptions about skeletal muscle fiber types with application to motor control, biomechanics, physiology, and biology

Author:

Blemker Silvia S.1ORCID,Brooks Susan V.2,Esser Karyn A.3ORCID,Saul Katherine R.4ORCID

Affiliation:

1. Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States

2. Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States

3. Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States

4. Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, United States

Abstract

Skeletal muscle is a highly complex tissue that is studied by scientists from a wide spectrum of disciplines, including motor control, biomechanics, exercise science, physiology, cell biology, genetics, regenerative medicine, orthopedics, and engineering. Although this diversity in perspectives has led to many important discoveries, historically, there has been limited overlap in discussions across fields. This has led to misconceptions and oversimplifications about muscle biology that can create confusion and potentially slow scientific progress across fields. The purpose of this synthesis paper is to bring together research perspectives across multiple muscle fields to identify common assumptions related to muscle fiber type that are points of concern to clarify. These assumptions include 1) classification by myosin isoform and fiber oxidative capacity is equivalent, 2) fiber cross-sectional area (CSA) is a surrogate marker for myosin isoform or oxidative capacity, and 3) muscle force-generating capacity can be inferred from myosin isoform. We address these three fiber-type traps and provide some context for how these misunderstandings can and do impact experimental design, computational modeling, and interpretations of findings, from the perspective of a range of fields. We stress the dangers of generalizing findings about “muscle fiber types” among muscles or across species or sex, and we note the importance for precise use of common terminology across the muscle fields.

Funder

HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development

HHS | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases

HHS | NIH | National Institute on Aging

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3