Postural disturbances resulting from unilateral and bilateral diaphragm contractions: a phrenic nerve stimulation study

Author:

Hamaoui Alain1,Hudson Anna L.234,Laviolette Louis235,Nierat Marie-Cécile23,Do Manh-Cuong6,Similowski Thomas237

Affiliation:

1. Laboratory of Posture and Movement Physiology, University Champollion, Albi, France;

2. Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1158 “Neurophysiologie Respiratoire Expérimentale et Clinique”, Paris, France;

3. INSERM, UMR_S 1158 “Neurophysiologie Respiratoire Expérimentale et Clinique”, Paris, France;

4. Neuroscience Research Australia and University of New South Wales, Sydney, Australia;

5. Centre de Recherche clinique de l'Institut Universitaire de Cardiologie et Pneumologie de Québec (CRIUCPQ), Quebec, Canada; and

6. CIAMS Laboratory, UFR STAPS, University Paris-Sud, Orsay, France

7. AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service de Pneumologie et Réanimation Médicale (Département “R3S”), Paris, France;

Abstract

Thoracoabdominal breathing movements are a complex source of postural disturbance, but there are contradictory reports in the literature with inspiration described as having either a backward or a forward disturbing effect. To elucidate the mechanisms underlying this phenomenon, the present study studied the postural disturbance caused by isolated contractions of the diaphragm. Eight male and four female healthy subjects followed an original paradigm of phrenic nerve stimulation (bilateral and unilateral) and “diaphragmatic” voluntary sniff maneuvers in the seated and standing postures. Center of gravity (CG) acceleration was calculated from force plate recordings, and respiratory kinematics were assessed with thoracic and abdominal sensor belts. CG and respiratory signals revealed that, while seated, bilateral phrenic stimulation and sniff maneuvers consistently produced expansion of the abdomen associated with a forward peak of CG acceleration. In the standing posture, the direction of the CG peak was reversed and always directed backward. Unilateral phrenic stimulation induced an additional medial-lateral acceleration of the CG, directed toward the nonactive side while seated, but in the opposite direction while standing. These results suggest that isolated diaphragmatic contractions produce a constant disturbing pattern for a given posture, but with opposite effects between standing and seated postures. This could be related to the different biomechanical configuration of the body in each posture, corresponding to distinct kinematic patterns of the osteoarticular chain. In addition, the lateral component of the CG acceleration induced by unilateral diaphragm contractions could be clinically relevant in patients with hemidiaphragm paralysis.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3