Adipose tissue and liver

Author:

Lundbom Jesper123

Affiliation:

1. Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany

2. German Center for Diabetes Research, München-Neuherberg, Düsseldorf, Germany

3. HUS Medical Imaging Center, Radiology, Helsinki University Central Hospital, University of Helsinki, Finland

Abstract

Adipose tissue and liver are central tissues in whole body energy metabolism. Their composition, structure, and function can be noninvasively imaged using a variety of measurement techniques that provide a safe alternative to an invasive biopsy. Imaging of adipose tissue is focused on quantitating the distribution of adipose tissue in subcutaneous and intra-abdominal (visceral) adipose tissue depots. Also, detailed subdivisions of adipose tissue can be distinguished with modern imaging techniques. Adipose tissue (or adipocyte) accumulation or infiltration of other organs can also be imaged, with intramuscular adipose tissue a common example. Although liver fat content is now accurately imaged using standard magnetic resonance imaging (MRI) techniques, inflammation and fibrosis are more difficult to determine noninvasively. Liver imaging efforts are therefore concerted on developing accurate imaging markers of liver fibrosis and inflammatory status. Magnetic resonance elastography (MRE) is presently the most reliable imaging technique for measuring liver fibrosis but requires an external device for introduction of shear waves to the liver. Methods using multiparametric diffusion, perfusion, relaxometry, and hepatocyte-specific MRI contrast agents may prove to be more easily implemented by clinicians, provided they reach similar accuracy as MRE. Adipose tissue imaging is experiencing a revolution with renewed interest in characterizing and identifying distinct adipose depots, among them brown adipose tissue. Magnetic resonance spectroscopy provides an interesting yet underutilized way of imaging adipose tissue metabolism through its fatty acid composition. Further studies may shed light on the role of fatty acid composition in different depots and why saturated fat in subcutaneous adipose tissue is a marker of high insulin sensitivity.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3