Metabolic cost of generating muscular force in human walking: insights from load-carrying and speed experiments

Author:

Griffin Timothy M.,Roberts Thomas J.,Kram Rodger

Abstract

We sought to understand how leg muscle function determines the metabolic cost of walking. We first indirectly assessed the metabolic cost of swinging the legs and then examined the cost of generating muscular force during the stance phase. Four men and four women walked at 0.5, 1.0, 1.5, and 2.0 m/s carrying loads equal to 0, 10, 20, and 30% body mass positioned symmetrically about the waist. The net metabolic rate increased in nearly direct proportion to the external mechanical power during moderate-speed (0.5–1.5 m/s) load carrying, suggesting that the cost of swinging the legs is relatively small. The active muscle volume required to generate force on the ground and the rate of generating this force accounted for >85% of the increase in net metabolic rate across moderate speeds and most loading conditions. Although these factors explained less of the increase in metabolic rate between 1.5 and 2.0 m/s (∼50%), the cost of generating force per unit volume of active muscle [i.e., the cost coefficient ( k)] was similar across all conditions [ k = 0.11 ± 0.03 (SD) J/cm3]. These data indicate that, regardless of the work muscles do, the metabolic cost of walking can be largely explained by the cost of generating muscular force during the stance phase.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Reference67 articles.

1. Alexander RM. Energy-saving mechanisms in walking and running. J Exp Biol 160: 55-69, 1991.

2. The mechanics of jumping by a dog ( Canis familiaris )

3. Optimum Muscle Design for Oscillatory Movements

4. Armstrong RB and Taylor CR. Relationship between muscle force and muscle area showing glycogen loss during locomotion. J Exp Biol 97: 411-420, 1982.

5. Individual muscle contributions to the in vivo achilles tendon force

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3