Affiliation:
1. Department of Orthopedic Surgery, University of California-San Diego Medical Center, San Diego, California; and
2. Department of Physiology, Center for Space Medicine Berlin, Charité - Universitätsmedizin Berlin, Germany
Abstract
For future space exploration missions, it is important to determine the best method of simulating on Earth cardiovascular and biomechanical conditions for lunar and Martian gravities. For this purpose, we compared exercise performed within a lower body negative pressure (LBNP) and a lower body positive pressure (LBPP) chamber. Twelve subjects underwent a protocol of resting and walking (0.25 Froude) within supine LBNP and upright LBPP simulation. Each protocol was performed in simulated 1/6 G and 3/8 G. We assessed heart rate (HR), mean arterial blood pressure, oxygen consumption (V̇o2), normalized stride length, normalized vertical peak ground reaction force, duty factor, cadence, perceived exertion (Borg), and comfort of the subject. A mixed linear model was employed to determine effects of the simulation on the respective parameters. Furthermore, parameters were compared with predicted values for lunar and Martian gravities to determine the method that showed the best agreement. During walking, all cardiovascular and biomechanical parameters were unaffected by the simulation used for lunar and Martian gravities. During rest, HR and V̇o2 were lower in supine LBNP compared with upright LBPP. HR, V̇o2, and normalized vertical peak ground reaction force obtained with supine LBNP and upright LBPP showed good agreement with predicted values. Since supine LBNP and upright LBPP are lacking significant differences, we conclude that both simulations are suited to simulate the cardiovascular and biomechanical conditions during activity in lunar and Martian gravities. Operational characteristics and the intended application should be considered when choosing either supine LBNP or upright LBPP to simulate partial gravities on Earth.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献