Comparison of cardiovascular and biomechanical parameters of supine lower body negative pressure and upright lower body positive pressure to simulate activity in 1/6 G and 3/8 G

Author:

Schlabs Thomas12,Rosales-Velderrain Armando1,Ruckstuhl Heidi1,Stahn Alexander C.2,Hargens Alan R.1

Affiliation:

1. Department of Orthopedic Surgery, University of California-San Diego Medical Center, San Diego, California; and

2. Department of Physiology, Center for Space Medicine Berlin, Charité - Universitätsmedizin Berlin, Germany

Abstract

For future space exploration missions, it is important to determine the best method of simulating on Earth cardiovascular and biomechanical conditions for lunar and Martian gravities. For this purpose, we compared exercise performed within a lower body negative pressure (LBNP) and a lower body positive pressure (LBPP) chamber. Twelve subjects underwent a protocol of resting and walking (0.25 Froude) within supine LBNP and upright LBPP simulation. Each protocol was performed in simulated 1/6 G and 3/8 G. We assessed heart rate (HR), mean arterial blood pressure, oxygen consumption (V̇o2), normalized stride length, normalized vertical peak ground reaction force, duty factor, cadence, perceived exertion (Borg), and comfort of the subject. A mixed linear model was employed to determine effects of the simulation on the respective parameters. Furthermore, parameters were compared with predicted values for lunar and Martian gravities to determine the method that showed the best agreement. During walking, all cardiovascular and biomechanical parameters were unaffected by the simulation used for lunar and Martian gravities. During rest, HR and V̇o2 were lower in supine LBNP compared with upright LBPP. HR, V̇o2, and normalized vertical peak ground reaction force obtained with supine LBNP and upright LBPP showed good agreement with predicted values. Since supine LBNP and upright LBPP are lacking significant differences, we conclude that both simulations are suited to simulate the cardiovascular and biomechanical conditions during activity in lunar and Martian gravities. Operational characteristics and the intended application should be considered when choosing either supine LBNP or upright LBPP to simulate partial gravities on Earth.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3