Pressure distension in leg vessels as influenced by prolonged bed rest and a pressure habituation regimen

Author:

Eiken Ola1,Mekjavic Igor B.2,Kounalakis Stylianos N.3,Kölegård Roger1

Affiliation:

1. Department of Environmental Physiology, Swedish Aerospace Physiology Centre, KTH Royal Institute of Technology, Solna, Sweden;

2. Jozef Stefan Institute, Ljubljana, Slovenia;

3. Human Performance-Rehabilitation Laboratory, Faculty of Physical and Cultural Education, Hellenic Military Academy, Vari, Greece

Abstract

Bed rest increases pressure distension in arteries, arterioles, and veins of the leg. We hypothesized that bed-rest-induced deconditioning of leg vessels is governed by the removal of the local increments in transmural pressure induced by assuming erect posture and, therefore, can be counteracted by intermittently increasing local transmural pressure during the bed rest. Ten men underwent 5 wk of horizontal bed rest. A subatmospheric pressure (−90 mmHg) was intermittently applied to one lower leg [pressure habituation (PH) leg]. Vascular pressure distension was investigated before and after the bed rest, both in the PH and control (CN) leg by increasing local distending pressure, stepwise up to +200 mmHg. Vessel diameter and blood flow were measured in the posterior tibial artery and vessel diameter in the posterior tibial vein. In the CN leg, bed rest led to 5-fold and 2.7-fold increments ( P < 0.01) in tibial artery pressure-distension and flow responses, respectively, and to a 2-fold increase in tibial vein pressure distension. In the PH leg, arterial pressure-distension and flow responses were unaffected by bed rest, whereas bed rest led to a 1.5-fold increase in venous pressure distension. It thus appears that bed-rest-induced deconditioning of leg arteries, arterioles, and veins is caused by removal of gravity-dependent local pressure loads and may be abolished or alleviated by a local pressure-habituation regimen.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Human cardiovascular adaptation to hypergravity;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2022-06-01

2. Differential responsiveness of glabrous and nonglabrous skin to local transmural pressure elevations: impact of 5 weeks of iterative local pressure loading;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2021-11-01

3. Adaptation to 5 weeks of intermittent local vascular pressure increments; mechanisms to be considered in the development of primary hypertension?;American Journal of Physiology-Heart and Circulatory Physiology;2021-04-01

4. Possible Assessment of Calf Venous Pump Efficiency by Computational Fluid Dynamics Approach;Frontiers in Physiology;2020-09-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3