Author:
Tsakoniti Aikaterini E.,Stoupis Christoforos A.,Athanasopoulos Spyros I.
Abstract
Knee pain and dysfunction have been often associated with an ineffective pull of the patella by the vastus medialis (VM) relative to the vastus lateralis (VL), particularly in individuals with knee joint malalignment. Such changes in muscular behavior may be attributed to muscle inhibition and/or atrophy that precedes the onset of symptoms. The aim of this study was to investigate possible effects of knee joint malalignment, indicated by a high quadriceps (Q) angle (HQ angle >15°), on the anatomic cross-sectional area (aCSA) of the entire quadriceps and its individual parts, in a group of 17 young asymptomatic men compared with a group of 19 asymptomatic individuals with low Q angle (LQ angle <15°). The aCSA of the entire quadriceps (TQ), VM, VL, vastus intermedius (VI), rectus femoris (RF), and patellar tendon (PT) were measured during static and dynamic magnetic resonance imaging (MRI) with the quadriceps relaxed and under contraction, respectively. A statistically significant lower aCSA was obtained in the HQ angle group, compared with the LQ angle group, for the TQ, VL, and VI in both static (TQ = 9.9%, VL = 12.9%, and VI = 9.1%; P < 0.05) and dynamic imaging (TQ = 10.7%, P < 0.001; VL = 13.4%, P < 0.01; and VI = 9.8%, P < 0.05) and the aCSA of the VM in dynamic MRI (11.9%; P < 0.01). The muscle atrophy obtained in the HQ angle group may be the result of a protective mechanism that inhibits and progressively adapts muscle behavior to reduce abnormal loading and wear of joint structures.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献