Affiliation:
1. Department of Pharmacology, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
Abstract
Although the reduction in dystrophin-associated glycoproteins is the primary pathophysiological consequence of the deficiency in dystrophin, little is known about the secondary abnormalities leading to x-linked muscular dystrophy. As abnormal Ca2+ handling may be involved in myonecrosis, we investigated the fate of key Ca2+ regulatory membrane proteins in dystrophic mdx skeletal muscle membranes. Whereas the expression of the ryanodine receptor, the dihydropyridine receptor, the Ca2+-ATPase, and calsequestrin was not affected, a drastic decline in calsequestrin-like proteins of 150–220 kDa was observed in dystrophic microsomes using one-dimensional immunoblotting, two-dimensional immunoblotting with isoelectric focusing, diagonal two-dimensional blotting technique, and immunoprecipitation. In analogy, overall Ca2+ binding was reduced in the sarcoplasmic reticulum of dystrophic muscle. The reduction in Ca2+ binding proteins might be directly involved in triggering impaired Ca2+ sequestration within the lumen of the sarcoplasmic reticulum. Thus disturbed sarcolemmal Ca2+ fluxes seem to influence overall Ca2+homeostasis, resulting in distinct changes in the expression profile of a subset of Ca2+ handling proteins, which might be an important factor in the progressive functional decline of dystrophic muscle fibers.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
86 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献