Transcranial Doppler estimation of cerebral blood flow and cerebrovascular conductance during modified rebreathing

Author:

Claassen Jurgen A. H. R.,Zhang Rong,Fu Qi,Witkowski Sarah,Levine Benjamin D.

Abstract

Clinical transcranial Doppler assessment of cerebral vasomotor reactivity (CVMR) uses linear regression of cerebral blood flow velocity (CBFV) vs. end-tidal CO2 (PetCO2) under steady-state conditions. However, the cerebral blood flow (CBF)-PetCO2 relationship is nonlinear, even for moderate changes in CO2. Moreover, CBF is increased by increases in arterial blood pressure (ABP) during hypercapnia. We used a modified rebreathing protocol to estimate CVMR during transient breath-by-breath changes in CBFV and PetCO2. Ten healthy subjects (6 men) performed 15 s of hyperventilation followed by 5 min of rebreathing, with supplemental O2 to maintain arterial oxygen saturation constant. To minimize effects of changes in ABP on CVMR estimation, cerebrovascular conductance index (CVCi) was calculated. CBFV-PetCO2 and CVCi-PetCO2 relationships were quantified by both linear and nonlinear logistic regression. In three subjects, muscle sympathetic nerve activity was recorded. From hyperventilation to rebreathing, robust changes occurred in PetCO2 (20–61 Torr), CBFV (−44 to +104% of baseline), CVCi (−39 to +64%), and ABP (−19 to +23%) (all P < 0.01). Muscle sympathetic nerve activity increased by 446% during hypercapnia. The linear regression slope of CVCi vs. PetCO2 was less steep than that of CBFV (3 vs. 5%/Torr; P = 0.01). Logistic regression of CBF-PetCO2 ( r2 = 0.97) and CVCi-PetCO2 ( r2 = 0.93) was superior to linear regression ( r2 = 0.91, r2 = 0.85; P = 0.01). CVMR was maximal (6–8%/Torr) for PetCO2 of 40–50 Torr. In conclusion, CBFV and CVCi responses to transient changes in PetCO2 can be described by a nonlinear logistic function, indicating that CVMR estimation varies within the range from hypocapnia to hypercapnia. Furthermore, quantification of the CVCi-PetCO2 relationship may minimize the effects of changes in ABP on the estimation of CVMR. The method developed provides insight into CVMR under transient breath-by-breath changes in CO2.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3