Noradrenergic modulation of XII motoneuron inspiratory activity does not involve α2-receptor inhibition of the Ih current or presynaptic glutamate release

Author:

Adachi Tadafumi,Robinson Dean M.,Miles Gareth B.,Funk Gregory D.

Abstract

Norepinephrine has powerful and diverse modulatory effects on hypoglossal (XII) motoneuron activity, which is important in maintaining airway patency. The objective was to test two hypotheses that α2-adrenoceptor-mediated, presynaptic inhibition of glutamatergic inspiratory drive (Selvaratnam SR, Parkis MA, and Funk GD. Brain Res 805: 104–115, 1998) and postsynaptic inhibition of the hyperpolarization-activated inward current ( Ih) (Parkis MA and Berger AJ. Brain Res 769: 108–118, 1997) modulate XII inspiratory activity. Nerve and whole cell recordings were applied to rhythmic medullary slice preparations from neonatal rats ( postnatal days 0–4) to monitor XII inspiratory burst amplitude and motoneuron properties. Application of an α2-receptor agonist (clonidine, 1 mM) to the XII nucleus reduced inspiratory burst amplitude to 71 ± 3% of control but had no effect on inspiratory synaptic currents. It also reduced the Ih current by ∼40%, but an Ih current blocker (ZD7288), at concentrations that blocked ∼80% of Ih, had no effect on inspiratory burst amplitude. The clonidine inhibition was unaffected by the GABAA antagonist (+)bicuculline but attenuated by the α2-antagonist rauwolscine and the imidazoline 1 (I1) antagonist efaroxan. The I1 agonist rilmenidine, but not the α2-agonist UK14304, inhibited XII output. Clonidine also reduced action potential amplitude or impaired repetitive firing. Although a contribution from α2, and in particular I1, receptors remains possible, results demonstrate that 1) noradrenergic modulation of XII inspiratory activity is unlikely to involve α2-receptor-mediated presynaptic inhibition of glutamate release or modulation of Ih; 2) inhibition of repetitive firing is a major factor underlying the inhibition of XII output by clonidine; and 3) Ih is present in neonatal XII motoneurons but does not contribute to shaping their inspiratory activity.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3