Affiliation:
1. CMLA, ENS Cachan, CNRS, UniverSud, Cachan; and
2. Physique de la Matière Condensée, Ecole Polytechnique, CNRS, Palaiseau, France
Abstract
The human tracheobronchial tree is a complex branched distribution system in charge of renewing the air inside the acini, which are the gas exchange units. We present here a systematic geometrical model of this system described as a self-similar assembly of rigid pipes. It includes the specific geometry of the upper bronchial tree and a self-similar intermediary tree with a systematic branching asymmetry. It ends by the terminal bronchioles whose generations range from 8 to 22. Unlike classical models, it does not rely on a simple scaling law. With a limited number of parameters, this model reproduces the morphometric data from various sources (Horsfield K, Dart G, Olson DE, Filley GF, Cumming G. J Appl Physiol 31: 207–217, 1971; Weibel ER. Morphometry of the Human Lung. New York: Academic Press, 1963) and the main characteristics of the ventilation. Studying various types of random variations of the airway sizes, we show that strong correlations are needed to reproduce the measured distributions. Moreover, the ventilation performances are observed to be robust against anatomical variability. The same methodology applied to the rat also permits building a geometrical model that reproduces the anatomical and ventilation characteristics of this animal. This simple model can be directly used as a common description of the entire tree in analytical or numerical studies such as the computation of air flow distribution or aerosol transport.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献