Sublingual microcirculatory blood flow and vessel density in Sherpas at high altitude

Author:

Gilbert-Kawai Edward1,Coppel Jonny1,Court Jo1,van der Kaaij Jildou1,Vercueil Andre1,Feelisch Martin12,Levett Denny132,Mythen Monty1,Grocott Michael P.132,Martin Daniel1,

Affiliation:

1. University College London Centre for Altitude, Space, and Extreme Environment Medicine, University College London Hospitals National Institute for Health Research Biomedical Research Centre, Institute of Sport and Exercise Health, London, United Kingdom;

2. Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom

3. Anaesthesia and Critical Care Research Area, National Institute for Health Research Respiratory Biomedical Research Unit, University Hospital Southampton National Health Service Foundation Trust, Southampton, United Kingdom; and

Abstract

Anecdotal reports suggest that Sherpa highlanders demonstrate extraordinary tolerance to hypoxia at high altitude, despite exhibiting lower arterial oxygen content than acclimatized lowlanders. This study tested the hypothesis that Sherpas exposed to hypobaric hypoxia on ascent to 5,300 m develop increased microcirculatory blood flow as a means of maintaining tissue oxygen delivery. Incident dark-field imaging was used to obtain images of the sublingual microcirculation from 64 Sherpas and 69 lowlanders. Serial measurements were obtained from participants undertaking an ascent from baseline testing (35 m or 1,300 m) to Everest base camp (5,300 m) and following subsequent descent in Kathmandu (1,300 m). Microcirculatory flow index and heterogeneity index were used to provide indexes of microcirculatory flow, while capillary density was assessed using small vessel density. Sherpas demonstrated significantly greater microcirculatory blood flow at Everest base camp, but not at baseline testing or on return in Kathmandu, than lowlanders. Additionally, blood flow exhibited greater homogeneity at 5,300 and 1,300 m (descent) in Sherpas than lowlanders. Sublingual small vessel density was not different between the two cohorts at baseline testing or at 1,300 m; however, at 5,300 m, capillary density was up to 30% greater in Sherpas. These data suggest that Sherpas can maintain a significantly greater microcirculatory flow per unit time and flow per unit volume of tissue at high altitude than lowlanders. These findings support the notion that peripheral vascular factors at the microcirculatory level may be important in the process of adaptation to hypoxia. NEW & NOTEWORTHY Sherpa highlanders demonstrate extraordinary tolerance to hypoxia at high altitude, yet the physiological mechanisms underlying this tolerance remain unknown. In our prospective study, conducted on healthy volunteers ascending to Everest base camp (5,300 m), we demonstrated that Sherpas have a higher sublingual microcirculatory blood flow and greater capillary density at high altitude than lowlanders. These findings support the notion that the peripheral microcirculation plays a key role in the process of long-term adaptation to hypoxia.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3