Locomotor activity in spinal cord-injured persons

Author:

Dietz V.,Harkema Susan J.

Abstract

After a spinal cord injury (SCI) of the cat or rat, neuronal centers below the level of lesion exhibit plasticity that can be exploited by specific training paradigms. In individuals with complete or incomplete SCI, human spinal locomotor centers can be activated and modulated by locomotor training (facilitating stepping movements of the legs using body weight support on a treadmill to provide appropriate sensory cues). Individuals with incomplete SCI benefit from locomotor training such that they improve their ability to walk over ground. Load- or hip joint-related afferent input seems to be of crucial importance for both the generation of a locomotor pattern and the effectiveness of the training. However, it may be a critical combination of afferent signals that is needed to generate a locomotor pattern after severe SCI. Mobility of individuals after a SCI can be improved by taking advantage of the plasticity of the central nervous system and can be maintained with persistent locomotor activity. In the future, if regeneration approaches can successfully be applied in human SCI, even individuals with complete SCI may recover walking ability with locomotor training.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3