Oxidation of combined ingestion of glucose and fructose during exercise

Author:

Jentjens Roy L. P. G.,Moseley Luke,Waring Rosemary H.,Harding Leslie K.,Jeukendrup Asker E.

Abstract

The purpose of the present study was to examine whether combined ingestion of a large amount of fructose and glucose during cycling exercise would lead to exogenous carbohydrate oxidation rates >1 g/min. Eight trained cyclists (maximal O2consumption: 62 ± 3 ml·kg-1·min-1) performed four exercise trials in random order. Each trial consisted of 120 min of cycling at 50% maximum power output (63 ± 2% maximal O2consumption), while subjects received a solution providing either 1.2 g/min of glucose (Med-Glu), 1.8 g/min of glucose (High-Glu), 0.6 g/min of fructose + 1.2 g/min of glucose (Fruc+Glu), or water. The ingested fructose was labeled with [U-13C]fructose, and the ingested glucose was labeled with [U-14C]glucose. Peak exogenous carbohydrate oxidation rates were ∼55% higher ( P < 0.001) in Fruc+Glu (1.26 ± 0.07 g/min) compared with Med-Glu and High-Glu (0.80 ± 0.04 and 0.83 ± 0.05 g/min, respectively). Furthermore, the average exogenous carbohydrate oxidation rates over the 60- to 120-min exercise period were higher ( P < 0.001) in Fruc+Glu compared with Med-Glu and High-Glu (1.16 ± 0.06, 0.75 ± 0.04, and 0.75 ± 0.04 g/min, respectively). There was a trend toward a lower endogenous carbohydrate oxidation in Fruc+Glu compared with the other two carbohydrate trials, but this failed to reach statistical significance ( P = 0.075). The present results demonstrate that, when fructose and glucose are ingested simultaneously at high rates during cycling exercise, exogenous carbohydrate oxidation rates can reach peak values of ∼1.3 g/min.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3