Does exercise-induced hypoxemia modify lactate influx into erythrocytes and hemorheological parameters in athletes?

Author:

Connes Philippe,Bouix Didier,Py Guillaume,Caillaud Corinne,Kippelen Pascale,Brun Jean-Frédéric,Varray Alain,Prefaut Christian,Mercier Jacques

Abstract

This study investigated 1) red blood cells (RBC) rigidity and 2) lactate influxes into RBCs in endurance-trained athletes with and without exercise-induced hypoxemia (EIH). Nine EIH and six non-EIH subjects performed a submaximal steady-state exercise on a cyclo-ergometer at 60% of maximal aerobic power for 10 min, followed by 15 min at 85% of maximal aerobic power. At rest and at the end of exercise, arterialized blood was sampled for analysis of arterialized pressure in oxygen, and venous blood was drawn for analysis of plasma lactate concentrations and hemorheological parameters. Lactate influxes into RBCs were measured at three labeled [U-14C]lactate concentrations (1.6, 8.1, and 41 mM) on venous blood sampled at rest. The EIH subjects had higher maximal oxygen uptake than non-EIH ( P < 0.05). Total lactate influx was significantly higher in RBCs from EIH compared with non-EIH subjects at 8.1 mM (1,498.1 ± 87.8 vs. 1,035.9 ± 114.8 nmol·ml−1·min−1; P < 0.05) and 41 mM (2,562.0 ± 145.0 vs. 1,618.1 ± 149.4 nmol·ml−1·min−1; P < 0.01). Monocarboxylate transporter-1-mediated lactate influx was also higher in EIH at 8.1 mM ( P < 0.05) and 41 mM ( P < 0.01). The drop in arterial oxygen partial pressure was negatively correlated with total lactate influx measured at 8.1 mM ( r = −0.82, P < 0.05) and 41 mM ( r = −0.84, P < 0.05) in the two groups together. Plasma lactate concentrations and hemorheological data were similar in the two groups at rest and at the end of exercise. The results showed higher monocarboxylate transporter-1-mediated lactate influx in the EIH subjects and suggested that EIH could modify lactate influx into erythrocyte. However, higher lactate influx in EIH subjects was not accompanied by an increase in RBC rigidity.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3