Superoxide anions in the paraventricular nucleus mediate the enhanced cardiac sympathetic afferent reflex and sympathetic activity in renovascular hypertensive rats

Author:

Han Ying12,Fan Zhi-Dan1,Yuan Ning1,Xie Gui-Qin1,Gao Juan1,De Wei2,Gao Xing-Ya1,Zhu Guo-Qing12

Affiliation:

1. Departments of 1Physiology and

2. Biochemical and Molecular Biology, Nanjing Medical University, Nanjing, China

Abstract

An enhanced cardiac sympathetic afferent reflex (CSAR) is involved in the sympathetic activation in renovascular hypertension. The present study was designed to determine the role of superoxide anions in the paraventricular nucleus (PVN) in mediating the enhanced CSAR and sympathetic activity in renovascular hypertension in the two-kidney, one-clip (2K1C) model. Sinoaortic denervation and vagotomy were carried out, and renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded under anesthesia. The CSAR was evaluated by the response of RSNA to the epicardial application of capsaicin. Superoxide anion levels and NAD(P)H oxidase activity in the PVN increased in 2K1C rats and were much higher in 2K1C rats than in sham-operated (sham) rats after the epicardial application of capsaicin or PVN microinjection of ANG II. In both 2K1C and sham rats, PVN microinjection of the superoxide anion scavenger tempol or the NAD(P)H oxidase inhibitor apocynin abolished the CSAR, whereas the SOD inhibitor diethyldithiocarbamic acid (DETC) potentiated the CSAR. Tempol and apocynin decreased but DETC increased baseline RSNA and MAP. ANG II in the PVN caused larger responses of the CSAR, baseline RSNA, and baseline MAP in 2K1C rats than in sham rats. The effects of ANG II were abolished by pretreatment with tempol or apocynin in both 2K1C and sham rats and augmented by DETC in the PVN in 2K1C rats. These results indicate that superoxide anions in the PVN mediate the CSAR and the effects of ANG II in the PVN. Increased superoxide anions in the PVN contribute to the enhanced CSAR and sympathetic activity in renovascular hypertension.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3