Coingestion of protein with carbohydrate during recovery from endurance exercise stimulates skeletal muscle protein synthesis in humans

Author:

Howarth Krista R.,Moreau Natalie A.,Phillips Stuart M.,Gibala Martin J.

Abstract

Coingestion of protein with carbohydrate (CHO) during recovery from exercise can affect muscle glycogen synthesis, particularly if CHO intake is suboptimal. Another potential benefit of protein feeding is an increased synthesis rate of muscle proteins, as is well documented after resistance exercise. In contrast, the effect of nutrient manipulation on muscle protein kinetics after aerobic exercise remains largely unexplored. We tested the hypothesis that ingesting protein with CHO after a standardized 2-h bout of cycle exercise would increase mixed muscle fractional synthetic rate (FSR) and whole body net protein balance (WBNB) vs. trials matched for total CHO or total energy intake. We also examined whether postexercise glycogen synthesis could be enhanced by adding protein or additional CHO to a feeding protocol that provided 1.2 g CHO·kg−1·h−1, which is the rate generally recommended to maximize this process. Six active men ingested drinks during the first 3 h of recovery that provided either 1.2 g CHO·kg−1·h−1 (L-CHO), 1.2 g CHO + 0.4 g protein·kg−1·h−1 (PRO-CHO), or 1.6 g CHO·kg−1·h−1 (H-CHO) in random order. Based on a primed constant infusion of l-[ ring-2H5]phenylalanine, analysis of biopsies (vastus lateralis) obtained at 0 and 4 h of recovery showed that muscle FSR was higher ( P < 0.05) in PRO-CHO (0.09 ± 0.01%/h) vs. both L-CHO (0.07 ± 0.01%/h) and H-CHO (0.06 ± 0.01%/h). WBNB assessed using [1-13C]leucine was positive only during PRO-CHO, and this was mainly attributable to a reduced rate of protein breakdown. Glycogen synthesis rate was not different between trials. We conclude that ingesting protein with CHO during recovery from aerobic exercise increased muscle FSR and improved WBNB, compared with feeding strategies that provided CHO only and were matched for total CHO or total energy intake. However, adding protein or additional CHO to a feeding strategy that provided 1.2 g CHO·kg−1·h−1 did not further enhance glycogen resynthesis during recovery.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 161 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3