Heterogeneous activity of the human genioglossus muscle assessed by multiple bipolar fine-wire electrodes

Author:

Eastwood Peter R.12,Allison Garry T.3,Shepherd Kelly L.1,Szollosi Irene1,Hillman David R.1

Affiliation:

1. Department of Pulmonary Physiology, Sir Charles Gairdner Hospital; and

2. Departments of Human Movement and Exercise Science, and

3. Surgery, Centre for Musculoskeletal Studies, University of Western Australia, Australia 6009

Abstract

Genioglossus (GG) electrical activity [measured by electromyogram (EMGgg)] is best measured by intramuscular electrodes; however, the homogeneity of EMGgg is undefined. We investigated the relationships between EMGgg and the site from which activity was measured to determine whether and to what extent inhomogeneity in activity occurred. Eight healthy human volunteers underwent ultrasound to determine GG depth and width. Four pairs of electrodes were then inserted percutaneously into the left and right GG muscle, anteriorly and posteriorly. Additional configurations were obtained by connecting electrodes across the midline and along each muscle belly. EMGgg activity was simultaneously recorded from these 10 configurations at rest and during various respiratory maneuvers. Heterogeneous behavior of the GG was evidenced by 1) the variable presence of phasic EMGgg at rest, which was undetectable in two subjects but evident in 65% of configurations in six subjects and present in all configurations in all subjects during voluntary hyperventilation; 2) a greater amplitude of EMGgg response to pharyngeal square-wave negative pressure in anterior than posterior configurations (14.1 ± 7.1 vs. 8.5 ± 5.1% of maximum, P < 0.05); and 3) variable (linear and alinear) relationships between EMGgg and lingual force within and between subjects. We hypothesize that regional differences in density and type of muscle fiber are the most likely sources of heterogeneity in these responses.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3