Simulated microgravity effects on the rat carotid and femoral arteries: role of contractile protein expression and mechanical properties of the vessel wall

Author:

Hwang Sunup,Shelkovnikov Stanislav A.,Purdy Ralph E.

Abstract

The goal of this study was to determine the effects of microgravity on myofilament protein expression and both passive and active length-force relationships in carotid and femoral arteries. Microgravity was simulated by 20-day hindlimb unweighting (HU) in Wistar male rats, and carotid and femoral artery segments were isolated from both HU and control (CTL) rats for Western blot and length-force analysis. Western blots revealed that HU significantly decreased myosin light chain-20 (MLC-20) protein levels in both carotid and femoral arteries and decreased myosin heavy chain (MHC) in femoral artery. α-Actin levels were not altered by HU treatment in either artery. Length-force analysis demonstrated that HU did not change either passive or active length-force relationships in the femoral artery. HU-treated arterial rings developed significantly less force to 100 mM K+ than CTL, but optimal lengths were identical. In the carotid artery, length-active force curves were identical for both CTL and HU; however the length-passive force curve for HU-treated rings exhibited a steeper slope than CTL, suggesting decreased compliance of the artery wall. In conclusion, our data suggest that the HU-induced decreases in both MLC-20 and MHC in femoral artery are responsible for the decreased contraction to 100 mM K+ in HU-treated femoral artery rings. In the carotid artery, the HU-induced decrease in vessel wall compliance may counter any decrease in contractility caused by the decreased MLC-20 levels.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3