Unchanged [3H]ouabain binding site content but reduced Na+-K+ pump α2-protein abundance in skeletal muscle in older adults

Author:

McKenna Michael J.1,Perry Ben D.12,Serpiello Fabio R.123,Caldow Marissa K.4,Levinger Pazit1,Cameron-Smith David5,Levinger Itamar12

Affiliation:

1. Institute of Sport, Exercise and Active Living (ISEAL), Muscle, Ions and Exercise Group, Victoria University, Melbourne, Victoria, Australia;

2. School of Sport and Exercise Science, Muscle, Ions and Exercise Group, Victoria University, Melbourne, Victoria, Australia;

3. Facolta' di Scienze Motorie, Universita' degli Studi di Verona, Verona, Italy;

4. School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Victoria, Australia; and

5. Liggins Institute, University of Auckland, Auckland, New Zealand

Abstract

Aging is associated with reduced muscle mass, weakness, and increased fatigability. In skeletal muscle, the Na+-K+ pump (NKA) is important in regulating Na+-K+ gradients, membrane excitability, and thus contractility, but the effects of aging on muscle NKA are unclear. We investigated whether aging is linked with reduced muscle NKA by contrasting muscle NKA isoform gene expression and protein abundance, and NKA total content in 17 Elderly (66.8 ± 6.4 yr, mean ± SD) and 16 Young adults (23.9 ± 2.2 yr). Participants underwent peak oxygen consumption assessment and a vastus lateralis muscle biopsy, which was analyzed for NKA α1-, α2-, α3-, β1-, β2-, and β3-isoform gene expression (real-time RT-PCR), protein abundance (immunoblotting), and NKA total content ([3H]ouabain binding sites). The Elderly had lower peak oxygen consumption (−36.7%, P = 0.000), strength (−36.3%, P = 0.001), NKA α2- (−24.4%, 11.9 ± 4.4 vs. 9.0 ± 2.7 arbitrary units, P = 0.049), and NKA β3-protein abundance (−23.0%, P = 0.041) than Young. The β3-mRNA was higher in Elderly compared with Young ( P = 0.011). No differences were observed between groups for other NKA isoform mRNA or protein abundance, or for [3H]ouabain binding site content. Thus skeletal muscle in elderly individuals was characterized by decreased NKA α2- and β3-protein abundance, but unchanged α1 abundance and [3H]ouabain binding. The latter was likely caused by reduced α2 abundance with aging, preventing an otherwise higher [3H]ouabain binding that might occur with a greater membrane density in smaller muscle fibers. Further study is required to verify reduced muscle NKA α2 with aging and possible contributions to impaired exercise capability and daily living activities.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3