Effects of ventilation on the collection of exhaled breath in humans

Author:

Cope Keary A.1,Watson Michael T.1,Foster W. Michael1,Sehnert Shelley S.1,Risby Terence H.1

Affiliation:

1. Department of Environmental Health Sciences, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205

Abstract

A computerized system has been developed to monitor tidal volume, respiration rate, mouth pressure, and carbon dioxide during breath collection. This system was used to investigate variability in the production of breath biomarkers over an 8-h period. Hyperventilation occurred when breath was collected from spontaneously breathing study subjects ( n = 8). Therefore, breath samples were collected from study subjects whose breathing were paced at a respiration rate of 10 breaths/min and whose tidal volumes were gauged according to body mass. In this “paced breathing” group ( n = 16), end-tidal concentrations of isoprene and ethane correlated with end-tidal carbon dioxide levels [Spearman's rank correlation test ( rs) = 0.64, P = 0.008 and rs = 0.50, P = 0.05, respectively]. Ethane also correlated with heart rate ( rs = 0.52, P < 0.05). There was an inverse correlation between transcutaneous pulse oximetry and exhaled carbon monoxide ( rs = -0.64, P = 0.008). Significant differences were identified between men ( n = 8) and women ( n = 8) in the concentrations of carbon monoxide (4 parts per million in men vs. 3 parts per million in women; P = 0.01) and volatile sulfur-containing compounds (134 parts per billion in men vs. 95 parts per billion in women; P = 0.016). There was a peak in ethanol concentration directly after food consumption and a significant decrease in ethanol concentration 2 h later ( P = 0.01; n = 16). Sulfur-containing molecules increased linearly throughout the study period (β = 7.4, P < 0.003). Ventilation patterns strongly influence quantification of volatile analytes in exhaled breath and thus, accordingly, the breathing pattern should be controlled to ensure representative analyses.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Reference48 articles.

1. Recommendations for Standardized Procedures for the Online and Offline Measurement of Exhaled Lower Respiratory Nitric Oxide and Nasal Nitric Oxide in Adults and Children—1999

2. Effects of respiratory apparatus on breathing pattern

3. Axelrod J and Daly J. Pituitary gland: enzymic formation of methanol from s-adenosylmethionine. Science 150: 892-893, 1970.

4. Cailleux A and Allain P. Isoprene and sleep. Life Sci 441: 1877-1880, 1989.

5. Chiappini F, Fuso L, and Pistelli R. Accuracy of pulse oximeter in the measurement of oxyhaemoglobin saturation. Eur Respir J 11: 716-719, 1998.

Cited by 129 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3