Successive contractile periods activate mitochondria at the onset of contractions in intact rat cardiac trabeculae

Author:

Wüst Rob C. I.12ORCID,Stienen Ger J. M.13

Affiliation:

1. Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands

2. Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands

3. Faculty of Science, Department of Physics and Astronomy, VU University, Amsterdam, The Netherlands

Abstract

The rate of oxidative phosphorylation depends on the contractile activity of the heart. Cardiac mitochondrial oxidative phosphorylation is determined by free ADP concentration, mitochondrial Ca2+ accumulation, mitochondrial enzyme activities, and Krebs cycle intermediates. The purpose of the present study was to examine the factors that limit oxidative phosphorylation upon rapid changes in contractile activity in cardiac muscle. We tested the hypotheses that prior contractile performance enhances the changes in NAD(P)H and FAD concentration upon an increase in contractile activity and that this mitochondrial “priming” depends on pyruvate dehydrogenase activity. Intact rat cardiac trabeculae were electrically stimulated at 0.5 Hz for at least 30 min. Thereafter, two equal bouts at elevated stimulation frequency of 1, 2, or 3 Hz were applied for 3 min with 3 min of 0.5-Hz stimulation in between. No discernible time delay was observed in the changes in NAD(P)H and FAD fluorescence upon rapid changes in contractile activity. The amplitudes of the rapid changes in fluorescence upon an increase in stimulation frequency (the on-transients) were smaller than upon a decrease in stimulation frequency (the off-transients). A first bout in glucose-containing superfusion solution resulted, during the second bout, in an increase in the amplitudes of the on-transients, but the off-transients remained the same. No such priming effect was observed after addition of 10 mM pyruvate. These results indicate that mitochondrial priming can be observed in cardiac muscle in situ and that pyruvate dehydrogenase activity is critically involved in the mitochondrial adaptation to increases in contractile performance. NEW & NOTEWORTHY Mitochondrial respiration increases with increased cardiac contractile activity. Similar to mitochondrial “priming” in skeletal muscle, we hypothesized that cardiac mitochondrial activity is altered upon successive bouts of contractions and depends on pyruvate dehydrogenase activity. We found altered bioenergetics upon repeated contractile periods, indicative of mitochondrial priming in rat myocardium. No effect was seen when pyruvate was added to the perfusate. As such, pyruvate dehydrogenase activity is involved in the mitochondrial adaptation to increased contractile performance.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3