Prestrain and cholinergic receptor-dependent differential recruitment of mechanosensitive energy loss and energy release elements in airway smooth muscle

Author:

Hai Chi-Ming1

Affiliation:

1. Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island

Abstract

We tested the hypothesis that oscillatory airway smooth muscle (ASM) mechanics is governed by mechanosensitive energy loss and energy release elements that can be recruited by prestrain and cholinergic stimulation. We measured mechanical energy loss and mechanical energy release in unstimulated and carbachol-stimulated bovine ASM held at prestrains ranging from 0.3 to 1.0 Lo (reference length) and subjected to sinusoidal length oscillation at 1 hz with oscillatory strain amplitudes ranging from 0.1 to 1.5% Lo. We found that oscillatory ASM mechanics during sinusoidal length oscillation is governed predominantly by one class of nonlinear mechanosensitive energy loss element and one class of nonlinear mechanosensitive energy release element with differential mechanosensitivities to oscillatory strain amplitude. The greater mechanosensitivity of the energy loss element than energy release element may explain the bronchodilatory effect of deep inspiration. Prestrain, an important determinant of ASM responsiveness, differentially increased energy loss and energy release in unstimulated and carbachol-stimulated ASM. Cholinergic stimulation, an important cause of bronchoconstriction and airway inflammation, also differentially increased energy loss and energy release. When prestrain and cholinergic stimulation were combined, we found that prestrain and cholinergic stimulation synergistically increased energy loss and energy release by ASM. The relationship between recruitment of energy loss elements and recruitment of energy release elements was nonlinear, suggesting that energy loss and energy release elements are not coupled in ASM cells. These findings imply that large lung volume and cholinergic ASM activation would synergistically increase mechanical energy expenditure during inspiration and mechanical recoil of ASM during expiration. NEW & NOTEWORTHY We report for the first time that oscillatory airway smooth muscle mechanics is governed predominantly by one class of nonlinear mechanosensitive energy loss element and one class of nonlinear mechanosensitive energy release element with differential mechanosensitivities to oscillatory strain amplitude. Prestrain and cholinergic stimulation synergistically and differentially recruit energy loss and energy release elements. The greater mechanosensitivity of the energy loss element than the energy release element may explain the bronchodilatory effect of deep inspiration.

Funder

Office of Extramural Research, National Institutes of Health (OER)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3