Role of mTORC1 in mechanically induced increases in translation and skeletal muscle mass

Author:

Goodman Craig A.12

Affiliation:

1. Institute of Health and Sport; Victoria University, Melbourne, Australia

2. Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, Victoria, Australia

Abstract

Skeletal muscle mass is, in part, regulated by the rate of mRNA translation (i.e., protein synthesis). The conserved serine/threonine kinase, mTOR (the mammalian/mechanistic target of rapamycin), found in the multiprotein complex, mTOR complex 1 (mTORC1), is a major positive regulator of protein synthesis. The purpose of this review is to describe some of the critical steps in translation initiation, mTORC1 and its potential direct and indirect roles in regulating translation, and evidence that mTORC1 regulates protein synthesis and muscle mass, with a particular focus on basal conditions and the response to mechanical stimuli. Current evidence suggests that for acute contraction models of mechanical stimuli, there is an emerging pattern suggesting that there is an early increase in protein synthesis governed by a rapamycin-sensitive mTORC1-dependent mechanism, while at later poststimulation time points, the mechanism may change to a rapamycin-insensitive mTORC1-dependent or even an mTORC1-independent mechanism. Furthermore, evidence suggests that mTORC1 appears to be absolutely necessary for muscle fiber hypertrophy induced by chronic mechanical loading but may only play a partial role in the hypertrophy induced by more intermittent types of acute resistance exercise, with the possibility of mTORC1-independent mechanisms also playing a role. Despite the progress that has been made, many questions about the activation of mTORC1, and its downstream targets, remain to be answered. Further research will hopefully provide novel insights into the regulation of skeletal muscle mTORC1 that may eventually be translated into novel exercise programing and/or targeted pharmacological therapies aimed at preventing muscle wasting and/or increasing muscle mass.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3