Author:
Trappe Todd,Trappe Scott,Lee Gary,Widrick Jeffrey,Fitts Robert,Costill David
Abstract
To determine the influence of a 17-day exposure to real and simulated spaceflight (SF) on cardiorespiratory function during exercise, four male crewmembers of the STS-78 space shuttle flight and eight male volunteers were studied before, during, and after the 17-day mission and 17 days of −6° head-down-tilt bed rest (BR), respectively. Measurements of oxygen uptake, pulmonary ventilation, and heart rate were made during submaximal cycling 60, 30, and 15 days before the SF liftoff and 12 and 7 days before BR; on SF days 2, 8, and 13 and on BR days 2, 8, and 13; and on days 1, 4, 5, and 8 after return to Earth and on days 3 and 7 after BR. During 15 days before liftoff, day 4 after return, and day 8 after return and all BR testing, each subject completed a continuous exercise test to volitional exhaustion on a semirecumbent (SF) or supine (BR) cycle ergometer to determine the submaximal and maximal cardiorespiratory responses to exercise. The remaining days of the SF testing were limited to a workload corresponding to 85% of the peak pre-SF peak oxygen uptake (V̇o2 peak) workload. Exposure to and recovery from SF and BR induced similar responses to submaximal exercise at 150 W. V̇o2 peak decreased by 10.4% from pre-SF (15 days before liftoff) to day 4 after return and 6.6% from pre-BR to day 3 after return, which was partially (SF: −5.2%) or fully (BR) restored within 1 wk of recovery. Workload corresponding to 85% of the peak pre-SF V̇o2 peak showed a rapid and continued decline throughout the flight (SF day 2, −6.2%; SF day 8, −9.0%), reaching a nadir of −11.3% during testing on SF day 13. During BR, V̇o2 peak also showed a decline from pre-BR (BR day 2, −7.3%; BR day 8, −7.1%; BR day 13, −9.0%). These results suggest that the onset of and recovery from real and simulated microgravity-induced cardiorespiratory deconditioning is relatively rapid, and head-down-tilt BR appears to be an appropriate model of this effect, both during and after SF.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Reference43 articles.
1. Control of red blood cell mass in spaceflight
2. Astrand PO and Rodahl K. Textbook of Work Physiology: Physiological Bases of Exercise. New York: McGraw-Hill, 1986.
3. Prediction of Stroke Volume From Oxygen Pulse Measurements in Untrained and Trained Men
4. Cardiovascular responses to exercise in middle-aged men after 10 days of bedrest.
5. Convertino VA. Exercise and adaptation to microgravity environments. In: Handbook of Physiology. Environmental Physiology. Bethesda, MD: Am. Physiol. Soc. 1996, sect. 4, vol. II, chapt. 36, p. 815–843.
Cited by
77 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献