Perinatal hyperoxia for 14 days increases nerve conduction time and the acute unitary response to hypoxia of rat carotid body chemoreceptors

Author:

Donnelly David F.,Kim Insook,Carle Claire,Carroll John L.

Abstract

Hyperoxia in the immediate perinatal period, but not in adult life, is associated with a life-long impairment of the ventilatory response to acute hypoxia. This effect is attributed to a functional impairment of peripheral chemoreceptors, including a reduction in the number of chemoreceptor afferent fibers and a reduction in “whole nerve” afferent activity. The purpose of the present study was to assess the activity levels of single chemoreceptor units in the immediate posthyperoxic period to determine whether functional impairment extended to single chemoreceptor units and whether the impairment was only induced by hyperoxia exposure in the immediate postnatal period. Two groups of rat pups were exposed to 60% inspired O2 fraction for 2 wk at ages 0–14 days and 14–28 days, at which time single-unit activities were isolated and recorded in vitro. Compared with control pups, hyperoxia-treated pups had a 10-fold reduction in baseline (normoxia) spiking activity. Peak unit responses to 12, 5, and 0% O2 were reduced and nerve conduction time was significantly slower in both hyperoxia-treated groups compared with control groups. We conclude that 1) hyperoxia greatly reduces single-unit chemoreceptor activities during normoxia and acute hypoxia, 2) the treatment effect is not limited to the immediate newborn period, and 3) at least part of the impairment may be due to changes in the afferent axonal excitability.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3