Affiliation:
1. Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, Florida; and
2. Department of Kinesiology, Mississippi State University, Mississippi State, Mississippi
Abstract
Controlled mechanical ventilation (MV) is a life-saving measure for patients in respiratory failure. However, MV renders the diaphragm inactive leading to diaphragm weakness due to both atrophy and contractile dysfunction. It is now established that oxidative stress is a requirement for MV-induced diaphragmatic proteolysis, atrophy, and contractile dysfunction to occur. Given that endurance exercise can elevate diaphragmatic antioxidant capacity and the levels of the cellular stress protein heat shock protein 72 (HSP72), we hypothesized that endurance exercise training before MV would protect the diaphragm against MV-induced oxidative stress, atrophy, and contractile dysfunction in female Sprague-Dawley rats. Our results confirm that endurance exercise training before MV increased both HSP72 and the antioxidant capacity in the diaphragm. Importantly, compared with sedentary animals, exercise training before MV protected the diaphragm against MV-induced oxidative damage, protease activation, myofiber atrophy, and contractile dysfunction. Further, exercise protected diaphragm mitochondria against MV-induced oxidative damage and uncoupling of oxidative phosphorylation. These results provide the first evidence that exercise can provide protection against MV-induced diaphragm weakness. These findings are important and establish the need for future experiments to determine the mechanism(s) responsible for exercise-induced diaphragm protection.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献