Chronic intermittent hypoxia decreases the expression of Na/H exchangers and HCO3-dependent transporters in mouse CNS

Author:

Douglas R. M.,Xue J.,Chen J. Y.,Haddad C. G.,Alper S. L.,Haddad G. G.

Abstract

Chronic intermittent hypoxia (CIH) is a component of several disease states, including obstructive sleep apnea, which results in neurocognitive and cardiovascular morbidity. Because chronic hypoxia can induce changes in metabolism and pH homeostasis, we hypothesized that CIH induces changes in the expression of acid-base transporters. Two- to three-day-old mice, exposed to alternating cycles of 2 min of hypoxia (6.0–7.5% O2) and 3 min of normoxia (21% O2) for 8 h/day for 28 days, demonstrated decreases in specific acid-base transport protein expression in most of the central nervous system (CNS). Sodium/hydrogen exchanger isoform 1 (NHE1) and sodium-bicarbonate cotransporter expression were decreased in all regions of the CNS but especially so in the cerebellum. NHE3, which is only expressed in the cerebellum, was also significantly decreased. Anion exchanger 3 protein was decreased in most brain regions, with the decrease being substantial in the hippocampus. These results indicate that CIH induces downregulation of the major acid-extruding transport proteins, NHE1 and sodium-bicarbonate cotransporter, in particular regions of the CNS. This downregulation in acid-extruding capacity may render neurons more prone to acidity and possibly to injury during CIH, especially in the cerebellum and hippocampus. Alternatively, it is possible that O2 consumption in these regions is decreased after CIH, with consequential downregulation in the expression of certain cellular proteins that may be less needed under such circumstances.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Role of TRP Channels and PMCA in Brain Disorders: Intracellular Calcium and pH Homeostasis;Frontiers in Cell and Developmental Biology;2021-01-28

2. The impact of preterm adversity on cardiorespiratory function;Experimental Physiology;2019-12-03

3. Hypoxia and connectivity in the developing vertebrate nervous system;Disease Models & Mechanisms;2018-12-01

4. Effects of metabolic acidosis on intracellular pH responses in multiple cell types;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2014-12-15

5. Cation‐Coupled Bicarbonate Transporters;Comprehensive Physiology;2014-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3