Plasma gelsolin modulates the production and fate of IL-1β-containing microparticles following high-pressure exposure and decompression

Author:

Bhopale Veena M.1,Ruhela Deepa2,Brett Kaighley D.3,Nugent Nathan Z.3,Fraser Noelle K.3,Levinson Susan L.4,DiNubile Mark J.4,Thom Stephen R.5

Affiliation:

1. Emergency Medicine, University of Maryland School of Medicine, United States

2. University of Maryland School of Medicine, United States

3. Canadian Armed Forces Health Services, Canada

4. BioAegis Therapeutics, United States

5. Emergency Medicine, University of Maryland Medical Center, United States

Abstract

Plasma gelsolin (pGSN) levels fall in association with diverse inflammatory conditions. We hypothesized pGSN would decrease due to the stresses imposed by high pressure and subsequent decompression, and repletion would ameliorate injuries in a murine decompression sickness (DCS) model. Research subjects were found to exhibit a modest decrease in pGSN level while at high pressure and a profound decrease after decompression. Changes occurred concurrent with elevations of circulating microparticles (MPs) carrying interleukin (IL)-1β. Mice exhibited a comparable decrease in pGSN after decompression along with elevations of MPs carrying IL-1β. Infusion of recombinant human (rhu)-pGSN into mice before or after pressure exposure abrogated these changes and prevented capillary leak in brain and skeletal muscle. Human and murine MPs generated under high pressure exhibited surface filamentous (F-) actin to which pGSN binds, leading to particle lysis. Additionally, human neutrophils exposed to high air pressure exhibit an increase in surface F-actin that is diminished by rhu-pGSN resulting in inhibition of MPs production. Administration of rhu-pGSN may have benefit as prophylaxis or treatment for DCS.

Funder

DOD | US Navy | Office of Naval Research

National Foundation of Emergency Medicine

Canadian Forces Surgeon General Health Research Program

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Reference2 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3