Synergism between the canine left and right hemidiaphragms

Author:

De Troyer André1,Cappello Matteo1,Meurant Nathalie1,Scillia Pierre1

Affiliation:

1. Laboratory of Cardiorespiratory Physiology, Brussels School of Medicine, Brussels; and Chest Service and Department of Radiology, Erasme University Hospital, 1070 Brussels, Belgium

Abstract

Expansion of the lung during inspiration results from the coordinated contraction of the diaphragm and several groups of rib cage muscles, and we have previously shown that the changes in intrathoracic pressure generated by the latter are essentially additive. In the present studies, we have assessed the interaction between the right and left hemidiaphragms in anesthetized dogs by comparing the changes in airway opening pressure (ΔPao) obtained during simultaneous stimulation of the two phrenic nerves (measured ΔPao) to the sum of the ΔPao values produced by their separate stimulation (predicted ΔPao). The measured ΔPao was invariably greater than the predicted ΔPao, and the ratio between these two values increased gradually as the stimulation frequency was increased; the ratio was 1.10 ± 0.01 ( P < 0.05) for a frequency of 10 Hz, whereas for a frequency of 50 Hz it amounted to 1.49 ± 0.05 ( P < 0.001). This interaction remained unchanged after the rib cage was stiffened and its compliance was made linear, thus indicating that the load against which the diaphragm works is not a major determinant. However, radiographic measurements showed that stimulation of one phrenic nerve extends the inactive hemidiaphragm toward the sagittal midplane and reduces the caudal displacement of the central portion of the diaphragmatic dome. As a result, the volume swept by the contracting hemidiaphragm is smaller than the volume it displaces when the contralateral hemidiaphragm also contracts. These observations indicate that 1) the left and right hemidiaphragms have a synergistic, rather than additive, interaction on the lung; 2) this synergism operates already during quiet breathing and increases in magnitude when respiratory drive is greater; and 3) this synergism is primarily related to the configuration of the muscle.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3