Reduced exercise-associated response of the GH-IGF-I axis and catecholamines in obese children and adolescents

Author:

Eliakim Alon,Nemet Dan,Zaldivar Frank,McMurray Robert G.,Culler Floyd L.,Galassetti Pietro,Cooper Dan M.

Abstract

Obesity blunts catecholamine and growth hormone (GH) responses to exercise in adults, but the effect of obesity on these exercise-associated hormonal responses in children is unclear. Therefore, the aim of the present study was to asses the effect of childhood obesity on the counterregulatory hormonal response to acute exercise. Twenty-five obese children (Ob; body mass index > 95%), and 25 age, gender, and maturity-matched normal-weight controls (NW) participated in the study. Exercise consisted of ten 2-min bouts of constant-cycle ergometry above the anaerobic threshold, with 1-min rest intervals between each bout. Pre-, post-, and 120-min postexercise blood samples were collected for circulating components of the GH-IGF-I axis and catecholamines. There were no differences in peak exercise heart rate, serum lactate, and peak O2 uptake normalized to lean body mass between the groups. Obesity attenuated the GH response to exercise (8.9 ± 1.1 vs. 3.4 ± 0.7 ng/ml in NW and Ob participants, respectively; P < 0.02). No significant differences in the response to exercise were found for other components of the GH-IGF-I axis. Obesity attenuated the catecholamine response to exercise (epinephrine: 52.5 ± 12.7 vs. 18.7 ± 3.7 pg/ml, P < 0.02; norepinephrine: 479.5 ± 109.9 vs. 218.0 ± 26.0 pg/ml, P < 0.04; dopamine: 17.2 ± 2.9 vs. 3.5 ± 1.9 pg/ml, P < 0.006 in NW and Ob, respectively). Insulin levels were significantly higher in the obese children and dropped significantly after exercise in both groups. Despite the elevated insulin levels and the blunted counterregulatory response, none of the participants developed hypoglycemia. Childhood obesity was associated with attenuated GH and catecholamine response to acute exercise. These abnormalities were compensated for, so that exercise was not associated with hypoglycemia, despite increased insulin levels in obese children.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3