Life-long consequences of postnatal normoxia exposure in rats raised at high altitude

Author:

Lumbroso Delphine1,Lemoine Alexandra1,Gonzales Marcelino2,Villalpando Gabriela2,Seaborn Tommy1,Joseph Vincent1

Affiliation:

1. Department of Pediatrics, Laval University, Centre de Recherche Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, Quebec, Canada; and

2. Instituto Boliviano de Biología de Altura, Universidad Mayor de San Andrés, La Paz, Bolivia

Abstract

We tested the hypothesis that exposure of high-altitude (HA) rats to a period of postnatal normoxia has long-term consequences on the ventilatory and hematological acclimatization in adults. Male and female HA rats (3,600 m, Po2 ≃ 100 Torr; La Paz, Bolivia) were exposed to normal room air [HA control (HACont)] or enriched oxygen (32% O2; Po2 ≃ 160 Torr) from 1 day before to 15 days after birth [HA postnatal normoxia (HApNorm)]. Hematocrit and hemoglobin values were assessed at 2, 12, and 32 wk of age. Cardiac and lung morphology were assessed at 12 wk by measuring right ventricular hypertrophy (pulmonary hypertension index) and lung air space-to-tissue ratio (indicative of alveolarization). Respiratory parameters under baseline conditions and in response to 32% O2 for 10 min (relieving the ambient hypoxic stimulus) were measured by whole body plethysmography at 12 wk. Finally, we performed a survival analysis up to 600 days of age. Compared with HACont, HApNorm rats had reduced hematocrit and hemoglobin levels at all ages (both sexes); reduced right ventricular hypertrophy (both sexes); lower air space-to-tissue ratio in the lungs (males only); reduced CO2 production rate, but higher oxygen uptake (males only); and similar respiratory frequency, tidal volume, and minute ventilation. When breathing 32% O2, HApNorm male rats had a stronger decrease of minute ventilation than HACont. HApNorm rats had a marked tendency toward longer survival throughout the study. We conclude that exposure to ambient hypoxia during postnatal development in HA rats has deleterious consequences on acclimatization to hypoxia as adults.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3