A theoretical consideration of the means whereby the mammalian core temperature is defended at a null zone

Author:

Bligh John

Abstract

The neural process by which it is generally supposed that the stability of the body temperature of mammals is achieved has long been sought, but it remains unresolved. One hypothesis is that, as with many engineered physical systems, there is a stable reference signal with which a signal representative of body temperature is compared. Another hypothesis is that the differing coefficients of two signals that vary with temperature changes provide the set-level determinant. These could be the activities of the “cold” and “warm” sensors in response to temperature changes. Reciprocal crossing inhibition between the cold sensor to heat production effector pathways and the warm sensor to heat loss effector pathways through the central nervous system is a likely occurrence, and it could create the null-point temperature at which neither heat production nor heat loss effectors are active. This null point would be, seemingly, the set point at which body temperature is regulated. Neither hypothesis has been validated unequivocally. Students should be aware of this uncertainty about the physiological basis of homeothermy and, indeed, of homeostasis more generally. Perhaps we should be looking for a general principle that underlies the many physical and chemical stabilities of the internal environment, rather than considering them as quite separate accomplishments.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Reference21 articles.

1. Bernard C. Introduction a l'Etude de la Medicine Experimentale. Paris: Bailliere et Fils, 1865.

2. Bligh J. Neuronal models of mammalian temperature regulation. In: Essays on Temperature Regulation, edited by Bligh J and Moore R. Amsterdam: Elsevier/North-Holland, 1972.

3. Mammalian homeothermy: an integrative thesis

4. Influence of ambient temperature on the thermoregulatory responses to 5-hydroxytryptamine, noradrenaline and acetylcholine injected into the lateral cerebral ventricles of sheep, goats and rabbits

5. ORGANIZATION FOR PHYSIOLOGICAL HOMEOSTASIS

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3