Effects of combined inhibition of ATP-sensitive potassium channels, nitric oxide, and prostaglandins on hyperemia during moderate exercise

Author:

Schrage William G.,Dietz Niki M.,Joyner Michael J.

Abstract

ATP-sensitive potassium (KATP) channels have been suggested to contribute to coronary and skeletal muscle vasodilation during exercise, either alone or interacting in a parallel or redundant process with nitric oxide (NO), prostaglandins (PGs), and adenosine. We tested the hypothesis that KATP channels, alone or in combination with NO and PGs, regulate exercise hyperemia in forearm muscle. Eighteen healthy young adults performed 20 min of moderate dynamic forearm exercise, with forearm blood flow (FBF) measured via Doppler ultrasound. After steady-state FBF was achieved for 5 min (saline control), the KATP inhibitor glibenclamide (Glib) was infused into the brachial artery for 5 min (10 μg·dl−1·min−1), followed by saline infusion during the final 10 min of exercise ( n = 9). Exercise increased FBF from 71 ± 11 to 239 ± 24 ml/min, and FBF was not altered by 5 min of Glib. Systemic plasma Glib levels were above the therapeutic range, and Glib increased insulin levels by ∼50%, whereas blood glucose was unchanged (88 ± 2 vs. 90 ± 2 mg/dl). In nine additional subjects, Glib was followed by combined infusion of NG-nitro-l-arginine methyl ester (l-NAME) plus ketorolac (to inhibit NO and PGs, respectively). As above, Glib had no effect on FBF but addition of l-NAME + ketorolac (i.e., triple blockade) reduced FBF by ∼15% below steady-state exercise levels in seven of nine subjects. Interestingly, triple blockade in two subjects caused FBF to transiently and dramatically decrease. This was followed by an acute recovery of flow above steady-state exercise values. We conclude 1) opening of KATP channels is not obligatory for forearm exercise hyperemia, and 2) triple blockade of NO, PGs, and KATP channels does not reduce hyperemia more than the inhibition of NO and PGs in most subjects. However, some subjects are sensitive to triple blockade, but they are able to restore FBF acutely during exercise. Future studies are required to determine the nature of these compensatory mechanisms in the affected individuals.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3