Hypoxic intensity: a determinant for the contribution of ATP and adenosine to the genesis of carotid body chemosensory activity

Author:

Conde S. V.1,Monteiro E. C.1,Rigual R.2,Obeso A.2,Gonzalez C.2

Affiliation:

1. CEDOC, Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal; and

2. Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Facultad de Medicina, Instituto de Biología y Genética Molecular, CSIC, Ciber de Enfermedades Respiratorias, CIBERES, Instituto de Salud Carlos III, Valladolid, Spain

Abstract

Excitatory effects of adenosine and ATP on carotid body (CB) chemoreception have been previously described. Our hypothesis is that both ATP and adenosine are the key neurotransmitters responsible for the hypoxic chemotransmission in the CB sensory synapse, their relative contribution depending on the intensity of hypoxic challenge. To test this hypothesis we measured carotid sinus nerve (CSN) activity in response to moderate and intense hypoxic stimuli (7 and 0% O2) in the absence and in the presence of adenosine and ATP receptor antagonists. Additionally, we quantified the release of adenosine and ATP in normoxia (21% O2) and in response to hypoxias of different intensities (10, 5, and 2% O2) to study the release pathways. We found that ZM241385, an A2 antagonist, decreased the CSN discharges evoked by 0 and 7% O2 by 30.8 and 72.5%, respectively. Suramin, a P2X antagonist, decreased the CSN discharges evoked by 0 and 7% O2 by 64.3 and 17.1%, respectively. Simultaneous application of both antagonists strongly inhibited CSN discharges elicited by both hypoxic intensities. ATP release by CB increased in parallel to hypoxia intensity while adenosine release increased preferably in response to mild hypoxia. We have also found that the lower the O2 levels are, the higher is the percentage of adenosine produced from extracellular catabolism of ATP. Our results demonstrate that ATP and adenosine are key neurotransmitters involved in hypoxic CB chemotransduction, with a more relevant contribution of adenosine during mild hypoxia, while vesicular ATP release constitutes the preferential origin of extracellular adenosine in high-intensity hypoxia.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3