Mitochondrial uncoupling reduces exercise capacity despite several skeletal muscle metabolic adaptations

Author:

Schlagowski A. I.12,Singh F.1,Charles A. L.1,Gali Ramamoorthy T.3,Favret F.12,Piquard F.12,Geny B.12,Zoll J.12

Affiliation:

1. University of Strasbourg, Faculty of Medicine, FMTS, EA 3072, Strasbourg, France;

2. CHRU of Strasbourg, Physiology and Functional Explorations Department, New Civil Hospital, Strasbourg, France; and

3. Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Physiological Genetics, Illkirch, France

Abstract

The effects of mitochondrial uncoupling on skeletal muscle mitochondrial adaptation and maximal exercise capacity are unknown. In this study, rats were divided into a control group (CTL, n = 8) and a group treated with 2,4-dinitrophenol, a mitochondrial uncoupler, for 28 days (DNP, 30 mg·kg−1·day−1in drinking water, n = 8). The DNP group had a significantly lower body mass ( P < 0.05) and a higher resting oxygen uptake (V̇o2, P < 0.005). The incremental treadmill test showed that maximal running speed and running economy ( P < 0.01) were impaired but that maximal V̇o2(V̇o2max) was higher in the DNP-treated rats ( P < 0.05). In skinned gastrocnemius fibers, basal respiration (V0) was higher ( P < 0.01) in the DNP-treated animals, whereas the acceptor control ratio (ACR, Vmax/V0) was significantly lower ( P < 0.05), indicating a reduction in OXPHOS efficiency. In skeletal muscle, DNP activated the mitochondrial biogenesis pathway, as indicated by changes in the mRNA expression of PGC1-α and -β, NRF-1 and −2, and TFAM, and increased the mRNA expression of cytochrome oxidase 1 ( P < 0.01). The expression of two mitochondrial proteins (prohibitin and Ndufs 3) was higher after DNP treatment. Mitochondrial fission 1 protein (Fis-1) was increased in the DNP group ( P < 0.01), but mitofusin-1 and -2 were unchanged. Histochemical staining for NADH dehydrogenase and succinate dehydrogenase activity in the gastrocnemius muscle revealed an increase in the proportion of oxidative fibers after DNP treatment. Our study shows that mitochondrial uncoupling induces several skeletal muscle adaptations, highlighting the role of mitochondrial coupling as a critical factor for maximal exercise capacities. These results emphasize the importance of investigating the qualitative aspects of mitochondrial function in addition to the amount of mitochondria.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3