Affiliation:
1. University of Strasbourg, Faculty of Medicine, FMTS, EA 3072, Strasbourg, France;
2. CHRU of Strasbourg, Physiology and Functional Explorations Department, New Civil Hospital, Strasbourg, France; and
3. Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Physiological Genetics, Illkirch, France
Abstract
The effects of mitochondrial uncoupling on skeletal muscle mitochondrial adaptation and maximal exercise capacity are unknown. In this study, rats were divided into a control group (CTL, n = 8) and a group treated with 2,4-dinitrophenol, a mitochondrial uncoupler, for 28 days (DNP, 30 mg·kg−1·day−1in drinking water, n = 8). The DNP group had a significantly lower body mass ( P < 0.05) and a higher resting oxygen uptake (V̇o2, P < 0.005). The incremental treadmill test showed that maximal running speed and running economy ( P < 0.01) were impaired but that maximal V̇o2(V̇o2max) was higher in the DNP-treated rats ( P < 0.05). In skinned gastrocnemius fibers, basal respiration (V0) was higher ( P < 0.01) in the DNP-treated animals, whereas the acceptor control ratio (ACR, Vmax/V0) was significantly lower ( P < 0.05), indicating a reduction in OXPHOS efficiency. In skeletal muscle, DNP activated the mitochondrial biogenesis pathway, as indicated by changes in the mRNA expression of PGC1-α and -β, NRF-1 and −2, and TFAM, and increased the mRNA expression of cytochrome oxidase 1 ( P < 0.01). The expression of two mitochondrial proteins (prohibitin and Ndufs 3) was higher after DNP treatment. Mitochondrial fission 1 protein (Fis-1) was increased in the DNP group ( P < 0.01), but mitofusin-1 and -2 were unchanged. Histochemical staining for NADH dehydrogenase and succinate dehydrogenase activity in the gastrocnemius muscle revealed an increase in the proportion of oxidative fibers after DNP treatment. Our study shows that mitochondrial uncoupling induces several skeletal muscle adaptations, highlighting the role of mitochondrial coupling as a critical factor for maximal exercise capacities. These results emphasize the importance of investigating the qualitative aspects of mitochondrial function in addition to the amount of mitochondria.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献