Author:
Bull J. L.,Tredici S.,Komori E.,Brant D. O.,Grotberg J. B.,Hirschl R. B.
Abstract
Motivated by the goal of understanding how to most homogeneously fill the lungs with perfluorocarbon for liquid ventilation, we investigate the transport of liquid instilled into the lungs using an intact rabbit model. Perfluorocarbon is instilled into the trachea of the ventilated animal. Radiographic images of the perfluorocarbon distribution are obtained at a rate of 30 frames/s during the filling process. Image analysis is used to quantify the liquid distribution (center of mass, spatial standard deviation, skewness, kurtosis, and indicators of homogeneity) as time progresses. We compare the distribution dynamics in supine animals to those in upright animals for three constant infusion rates of perfluorocarbon: 15, 40, and 60 ml/min. It is found that formation of liquid plugs in large airways, which is affected by posture and infusion rate, can result in a more homogeneous liquid distribution than gravity drainage alone. The supine posture resulted in more homogeneous filling of the lungs than did upright posture, in which the lungs tend to fill in the inferior regions first. Faster instillation of perfluorocarbon results in liquid plugs forming in large airways and, consequently, more uniform distribution of perfluorocarbon than slower instillation rates in the upright animals.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献