Microparticle-induced vascular injury in mice following decompression is inhibited by hyperbaric oxygen: effects on microparticles and interleukin-1β

Author:

Thom Stephen R.1,Bhopale Veena M.1,Yang Ming1

Affiliation:

1. Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, Maryland

Abstract

Hyperbaric oxygen (HBO2) became a mainstay for treating decompression sickness (DCS) because bubbles are associated with the disorder. Inflammatory processes including production of circulating microparticles (MPs) have now been shown to occur with DCS, leading to questions regarding pathophysiology and the role for HBO2. We investigated effects of HBO2 on mice exposed to 790 kPa air pressure for 2 h, which triggers elevations of MPs ladened with interleukin (IL)-1β that cause diffuse vascular injuries. Exposure to 283 kPa O2 (HBO2) inhibited MP elevations at 2 h postdecompression by 50% when applied either prophylactically or as treatment after decompression, and the MP number remained suppressed for 13 h in the prophylactic group. Particle content of IL-1β at 2 h postdecompression was 139.3 ± 16.2 [means ± SE; n = 11, P < 0.05) pg/million MPs vs. 8.2 ± 1.0 ( n = 15) in control mice, whereas it was 31.5 ± 6.1 ( n = 6, not significant vs. control (NS)] in mice exposed to HBO2 prophylactically, and 16.6 ± 6.3 ( n = 7, NS) when HBO2 was administered postdecompression. IL-1β content in MPs was similar in HBO2-exposed mice at 13 h postdecompression. HBO2 also inhibited decompression-associated neutrophil activation and diffuse vascular leak. Immunoprecipitation studies demonstrated that HBO2 inhibits high-pressure-mediated neutrophil nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 inflammasome oligomerization. Furthermore, MPs isolated from decompressed mice cause vascular injuries when injected into naïve mice, but if decompressed mice were exposed to HBO2 before MP harvest, vascular injuries were inhibited. We conclude that HBO2 impedes high-pressure/decompression-mediated inflammatory events by inhibiting inflammasome formation and IL-1β production. NEW & NOTEWORTHY High pressure/decompression causes vascular damage because it stimulates production of microparticles that contain high concentrations of interleukin-1β, and hyperbaric oxygen can prevent injuries.

Funder

DOD | Office of Naval Research (ONR)

National Foundation of Emergency Medicine

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3