Cell- and molecular-level mechanisms contributing to diastolic dysfunction in HFpEF

Author:

Campbell Kenneth S.1ORCID,Sorrell Vincent L.2

Affiliation:

1. Department of Physiology and Center for Muscle Biology, Linda and Jack Gill Heart Institute, University of Kentucky, Lexington, Kentucky; and

2. Division of Cardiovascular Medicine, Linda and Jack Gill Heart Institute, University of Kentucky, Lexington, Kentucky

Abstract

Heart failure with preserved ejection fraction (HFpEF) is the default diagnosis for patients who have symptoms of heart failure, an ejection fraction >0.5, and evidence of diastolic dysfunction. The clinical condition, which was largely unrecognized 30 years ago, is now a major health problem and currently accounts for 50% of all patients with heart failure. Clinical studies show that patients with HFpEF exhibit increased passive stiffness of the ventricles and a slower rate of pressure decline during diastole. This review discusses some of the cell- and molecular-level mechanisms that contribute to these effects and focuses on data obtained using human samples. Collagen cross linking, modulation of protein kinase G-related pathways, Ca2+ handling, and strain-dependent detachment of cross bridges are highlighted as potential factors that could be modulated to improve ventricular function in patients with HFpEF.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute (NHBLI)

HHS | NIH | National Center for Advancing Translational Sciences (NCATS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3