Force-velocity relationship during isometric and isotonic fatiguing contractions

Author:

Devrome Andrea N.1,MacIntosh Brian R.1

Affiliation:

1. Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada

Abstract

Fatiguing contractions change the force-velocity relationship, but assessment of this relationship in fatigue has usually been obtained after isometric contractions. We studied fatigue caused by isometric or isotonic contractions, by assessment of the force-velocity relationship while the contractions maintaining fatigue were continued. This approach allowed determination of the force-velocity relationship during a steady condition of fatigue. We used the in situ rat medial gastrocnemius muscle, a physiologically relevant preparation. Intermittent (1/s) stimulation at 170 Hz for 100 ms resulted in decreased isometric force to ~35% of initial or decreased peak velocity of shortening in dynamic contractions to ~45% of initial. Dynamic contractions resulted in a transient initial increase in velocity, followed by a rapid decline until a reasonably steady level was maintained. Data were fit to the classic Hill equation for determination of the force-velocity relationship. Isometric and dynamic contractions resulted in similar decreases in maximal isometric force and peak power. Only Vmax was different between the types of contraction ( P < 0.005) with greater decrease in Vmax during isotonic contractions to 171.7 ± 7.3 mm/s than during isometric contractions to 208.8 mm/s. Curvature indicated by a/Po (constants from fit to Hill equation) changed from 0.45 ± 0.04 to 0.71 ± 0.11 during isometric contractions and from 0.51 ± 0.04 to 0.85 ± 0.18 during isotonic contractions. Recovery was incomplete 45 min after stopping the intermittent contractions. At this time, recovery of low-frequency isometric force was substantially less after isometric contractions, implicating force during intermittent contractions as a determining factor with this measure of fatigue. NEW & NOTEWORTHY The force-velocity relationship was captured while fatigue was maintained at a constant level during isometric and dynamic contractions. The curvature of the force-velocity relationship was less curved during fatigue than prefatigued, but within 45 min this recovered. Low-frequency fatigue persisted with greater depression of low-frequency force after isometric contractions, possibly because of higher force contractions during intermittent contractions.

Funder

NSERC, Canada

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3