Oxygen, pH, and mitochondrial oxidative phosphorylation

Author:

Wilson David F.1,Harrison David K.2,Vinogradov Sergei A.1

Affiliation:

1. Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and

2. Microvascular Measurements, St. Lorenzen, Italy

Abstract

The oxygen dependence of mitochondrial oxidative phosphorylation was measured in suspensions of isolated rat liver mitochondria using recently developed methods for measuring oxygen and cytochrome c reduction. Cytochrome- c oxidase (energy conservation site 3) activity of the mitochondrial respiratory chain was measured using an artificial electron donor ( N, N, N′, N′-tetramethyl- p-phenylenediamine) and ascorbate to directly reduce the cytochrome c, bypassing sites 1 and 2. For mitochondrial suspensions with added ATP, metabolic conditions approximating those in intact cells and decreasing oxygen pressure both increased reduction of cytochrome c and decreased respiratory rate. The kinetic parameters [ KMand maximal rate ( VM)] for oxygen were determined from the respiratory rates calculated for 100% reduction of cytochrome c. At 22°C, the KMfor oxygen is near 3 Torr (5 μM), 12 Torr (22 μM), and 18 Torr (32 μM) at pH 6.9, 7.4, and 7.9, respectively, and VMcorresponds to a turnover number for cytochrome c at 100% reduction of near 80/s and is independent of pH. Uncoupling oxidative phosphorylation increased the respiratory rate at saturating oxygen pressures by twofold and decreased the KMfor oxygen to <2 Torr at all tested pH values. Mitochondrial oxidative phosphorylation is an important oxygen sensor for regulation of metabolism, nutrient delivery to tissues, and cardiopulmonary function. The decrease in KMfor oxygen with acidification of the cellular environment impacts many tissue functions and may give transformed cells a significant survival advantage over normal cells at low-pH, oxygen-limited environment in growing tumors.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3