Ventilatory long-term facilitation is evident after initial and repeated exposure to intermittent hypoxia in mice genetically depleted of brain serotonin

Author:

Hickner Stephen12,Hussain Najaah12,Angoa-Perez Mariana13,Francescutti Dina M.13,Kuhn Donald M.13,Mateika Jason H.124

Affiliation:

1. John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan;

2. Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan;

3. Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan

4. Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan; and

Abstract

Our study was designed to determine if central nervous system (CNS) serotonin is required for the induction of ventilatory long-term facilitation (LTF) in intact, spontaneously breathing mice. Nineteen tryptophan hydroxylase 2-deficient (Tph2−/−) mice, devoid of serotonin in the CNS, and their wild-type counterparts (Tph2+/+) were exposed to intermittent hypoxia each day for 10 consecutive days. The ventilatory response to intermittent hypoxia was greater in the Tph2+/+ compared with the Tph2−/− mice (1.10 ± 0.10 vs. 0.77 ± 0.01 ml min−1·percent−1 oxygen; P ≤ 0.04). Ventilatory LTF, caused by increases in breathing frequency, was evident in Tph2+/+ and Tph2−/− mice following exposure to intermittent hypoxia each day; however, the magnitude of the response was greater in the Tph2+/+ compared with the Tph2−/− mice (1.11 ± 0.02 vs. 1.05 ± 0.01 normalized to baseline on each day; P ≤ 0.01). The magnitude of ventilatory LTF increased significantly from the initial to the finals days of the protocol in the Tph2−/− (1.06 ± 0.02 vs. 1.11 ± 0.03 normalized to baseline on the initial days; P ≤ 0.004) but not in the Tph2+/+ mice. This enhanced response was mediated by increases in tidal volume. Body temperature and metabolic rate did not account for differences in the magnitude of ventilatory LTF observed between groups after acute and repeated daily exposure to intermittent hypoxia. We conclude that ventilatory LTF, after acute exposure to intermittent hypoxia, is mediated by increases in breathing frequency and occurs in the absence of serotonin, although the magnitude of the response is diminished. This weakened response is enhanced following repeated daily exposure to intermittent hypoxia, via increases in tidal volume, to a similar magnitude evident in Tph2+/+ mice. Thus the magnitude of ventilatory LTF following repeated daily exposure to intermittent hypoxia is not dependent on the presence of CNS serotonin.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3