Mechanisms contributing to the response of upper-airway muscles to changes in airway pressure

Author:

Carberry Jayne C.1,Hensen Hanna1,Fisher Lauren P.1,Saboisky Julian P.1,Butler Jane E.1,Gandevia Simon C.1,Eckert Danny J.1

Affiliation:

1. Neuroscience Research Australia (NeuRA) and University of New South Wales, Sydney, New South Wales, Australia

Abstract

This study assessed the effects of inhaled lignocaine to reduce upper airway surface mechanoreceptor activity on 1) basal genioglossus and tensor palatini EMG, 2) genioglossus reflex responses to large pulses (∼10 cmH2O) of negative airway pressure, and 3) upper airway collapsibility in 15 awake individuals. Genioglossus and tensor palatini muscle EMG and airway pressures were recorded during quiet nasal breathing and during brief pulses (250 ms) of negative upper-airway pressure. Lignocaine reduced peak inspiratory (5.6 ± 1.5 vs. 3.8 ± 1.1% maximum; mean ± SE, P < 0.01) and tonic (2.8 ± 0.8 vs. 2.1 ± 0.7% maximum; P < 0.05) genioglossus EMG during quiet breathing but had no effect on tensor palatini EMG (5.0 ± 0.8 vs. 5.0 ± 0.5% maximum; P = 0.97). Genioglossus reflex excitation to negative pressure pulses decreased after anesthesia (60.9 ± 20.7 vs. 23.6 ± 5.2 μV; P < 0.05), but not when expressed as a percentage of the immediate prestimulus baseline. Reflex excitation was closely related to the change in baseline EMG following lignocaine ( r2 = 0.98). A short-latency genioglossus reflex to rapid increases from negative to atmospheric pressure was also observed. The upper airway collapsibility index (%difference) between nadir choanal and epiglottic pressure increased after lignocaine (17.8 ± 3.7 vs. 28.8 ± 7.5%; P < 0.05). These findings indicate that surface receptors modulate genioglossus but not tensor palatini activity during quiet breathing. However, removal of input from surface mechanoreceptors has minimal effect on genioglossus reflex responses to large (∼10 cmH2O), sudden changes in airway pressure. Changes in pressure rather than negative pressure per se can elicit genioglossus reflex responses. These findings challenge previous views and have important implications for upper airway muscle control.

Funder

Department of Health, Australian Government | National Health and Medical Research Council (NHMRC)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3