Bradykinin does not mediate cutaneous active vasodilation during heat stress in humans

Author:

Kellogg D. L.12,Liu Y.2,McAllister K.2,Friel C.2,Pérgola P. E.3

Affiliation:

1. Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, Audie L. Murphy Memorial Veterans Hospital Division, and Divisions of

2. Geriatrics and Gerontology and

3. Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229

Abstract

To test the hypothesis that bradykinin effects cutaneous active vasodilation during hyperthermia, we examined whether the increase in skin blood flow (SkBF) during heat stress was affected by blockade of bradykinin B2 receptors with the receptor antagonist HOE-140. Two adjacent sites on the forearm were instrumented with intradermal microdialysis probes for local delivery of drugs in eight healthy subjects. HOE-140 was dissolved in Ringer solution (40 μM) and perfused at one site, whereas the second site was perfused with Ringer alone. SkBF was monitored by laser-Doppler flowmetry (LDF) at both sites. Mean arterial pressure (MAP) was monitored from a finger, and cutaneous vascular conductance (CVC) was calculated (CVC = LDF/MAP). Water-perfused suits were used to control body temperature and evoke hyperthermia. After hyperthermia, both microdialysis sites were perfused with 28 mM nitroprusside to effect maximal vasodilation. During hyperthermia, CVC increased at HOE-140 (69 ± 2% maximal CVC, P < 0.01) and untreated sites (65 ± 2% maximal CVC, P < 0.01). These responses did not differ between sites ( P > 0.05). Because the bradykinin B2-receptor antagonist HOE-140 did not alter SkBF responses to heat stress, we conclude that bradykinin does not mediate cutaneous active vasodilation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3