Burn trauma alters calcium transporter protein expression in the heart

Author:

Ballard-Croft Cherry,Carlson Deborah,Maass David L.,Horton Jureta W.

Abstract

We have shown previously that burn trauma produces significant cardiac dysfunction, which is first evident 8 h postburn and is maximal 24 h postburn. Because calcium handling by the cardiomyocyte is essential for cardiac function, one mechanism by which burn injury may cause cardiac abnormalities is via calcium dyshomeostasis. We hypothesized that major burn injury alters cardiomyocyte calcium handling through changes in calcium transporter expression. Sprague-Dawley rats were given either burn injury or no burn injury (controls). Cardiomyocyte intracellular calcium and sodium were quantified at various times postburn by fura 2-AM or sodium-binding benzofuran isophthalate fluorescent indicators, respectively. In addition, hearts freeze-clamped at various times postburn (2, 4, 8, and 24 h) were used for Western blot analysis using antibodies against the sarcoplasmic reticulum calcium-ATPase (SERCA), the L-type calcium-channel, the ryanodine receptor, the sodium/calcium exchanger, or the sodium-potassium-ATPase. Intracellular calcium levels were elevated significantly 8–24 h postburn, and intracellular sodium was increased significantly 4 through 24 h postburn. Expression of SERCA was significantly reduced 1–8 h postburn, whereas L-type calcium-channel expression was diminished 1 and 2 h postburn ( P < 0.05) but returned toward control levels 4 h postburn. Ryanodine receptor protein was significantly reduced at 1 and 2 h postburn, returning to baseline by 4 h postburn. Sodium/calcium exchanger expression was significantly elevated 2 h postburn but was significantly reduced 24 h postburn. An increase in sodium-potassium-ATPase expression occurred 2–24 h postburn. These data confirm that burn trauma alters calcium transporter expression, likely contributing to cardiomyocyte calcium loading and cardiac contractile dysfunction.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3