Individuals have unique muscle activation signatures as revealed during gait and pedaling

Author:

Hug François123ORCID,Vogel Clément1,Tucker Kylie24,Dorel Sylvain1,Deschamps Thibault1,Le Carpentier Éric5,Lacourpaille Lilian1

Affiliation:

1. Movement, Interactions, Performance, Nantes Université, EA 4334, Nantes, France

2. National Health and Medical Research Council Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia

3. Institut Universitaire de France, Paris, France

4. School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia

5. Laboratory LS2N, École Centrale de Nantes, Nantes, France

Abstract

Although it is known that the muscle activation patterns used to produce even simple movements can vary between individuals, these differences have not been considered to prove the existence of individual muscle activation strategies (or signatures). We used a machine learning approach (support vector machine) to test the hypothesis that each individual has unique muscle activation signatures. Eighty participants performed a series of pedaling and gait tasks, and 53 of these participants performed a second experimental session on a subsequent day. Myoelectrical activity was measured from eight muscles: vastus lateralis and medialis, rectus femoris, gastrocnemius lateralis and medialis, soleus, tibialis anterior, and biceps femoris -long head. The classification task involved separating data into training and testing sets. For the within-day classification, each pedaling/gait cycle was tested using the classifier, which had been trained on the remaining cycles. For the between-day classification, each cycle from day 2 was tested using the classifier, which had been trained on the cycles from day 1. When considering all eight muscles, the activation profiles were assigned to the corresponding individuals with a classification rate of up to 99.28% (2,353/2,370 cycles) and 91.22% (1,341/1,470 cycles) for the within-day and between-day classification, respectively. When considering the within-day classification, a combination of two muscles was sufficient to obtain a classification rate >80% for both pedaling and gait. When considering between-day classification, a combination of four to five muscles was sufficient to obtain a classification rate >80% for pedaling and gait. These results demonstrate that strategies not only vary between individuals, as is often assumed, but are unique to each individual. NEW & NOTEWORTHY We used a machine learning approach to test the uniqueness and robustness of muscle activation patterns. We considered that, if an algorithm can accurately identify participants, one can conclude that these participants exhibit discernible differences and thus have unique muscle activation signatures. Our results show that activation patterns not only vary between individuals, but are unique to each individual. Individual differences should, therefore, be considered relevant information for addressing fundamental questions about the control of movement.

Funder

Institut Universitaire de France

Agence Nationale de la Recherche

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3