Author:
Smolensky Alexander V.,Ford Lincoln E.
Abstract
The full functional length range of trachealis muscle was measured to identify a precise reference length and to assess the length changes that the myofilament lattice can accommodate. The initial reference length ( L10%) was that where rest tension equaled 10% of total force (passive tension plus active force). Total force at this length served as a force reference (Fref = 219 ± 12 kPa, N = 7). Muscles initially adapted at L10% for 30–60 min had no rest tension when shortened to <0.9 L10%. Passive tension rose steeply and linearly with slope 11.2 Fref/ L10% at lengths >1.04 L10%. Rest tension at 1.1 L10% declined by <10% over 1 h. The steep slope and stability of rest tension at long lengths suggest that a parameter of the slope could serve as a precise, reproducible reference length. Active force was nearly constant at lengths 0.33–1.0 L10% and declined steeply at lengths between 0.1 and 0.2 L10%, extrapolating to zero at 0.076 L10%. Muscles visibly reextended during relaxation at lengths <0.25 L10%. At long lengths, force extrapolated to zero at 1.175 L10%. The >15-fold length range (0.076–1.175 L10%) for force generation and nearly constant force over a greater than threefold length range is likely produced by several structural accommodations, including filament sliding, an increased number of sliding filaments in series, and increased length of passive structures in series with the sliding filaments. Visible reextension during relaxation suggests that the lattice does not undergo plastic adaptations at lengths <25% L10% and that lattice plasticity is limited to a three- to fourfold length range.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献