Vasoconstrictor responsiveness during hyperbaric hyperoxia in contracting human muscle

Author:

Casey Darren P.1,Joyner Michael J.1,Claus Paul L.2,Curry Timothy B.1

Affiliation:

1. Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota; and

2. Division of Preventive, Occupational, and Aerospace Medicine, Mayo Clinic, Rochester, Minnesota

Abstract

Large increases in systemic oxygen content cause substantial reductions in exercising forearm blood flow (FBF) due to increased vascular resistance. We hypothesized that 1) functional sympatholysis (blunting of sympathetic α-adrenergic vasoconstriction) would be attenuated during hyperoxic exercise and 2) α-adrenergic blockade would limit vasoconstriction during hyperoxia and increase FBF to levels observed under normoxic conditions. Nine male subjects (age 28 ± 1 yr) performed forearm exercise (20% of maximum) under normoxic and hyperoxic conditions. Studies were performed in a hyperbaric chamber at 1 atmosphere absolute (ATA; sea level) while breathing 21% O2 and at 2.82 ATA while breathing 100% O2 (estimated change in arterial O2 content ∼6 ml O2/100 ml). FBF (ml/min) was measured using Doppler ultrasound. Forearm vascular conductance (FVC) was calculated from FBF and blood pressure (arterial catheter). Vasoconstrictor responsiveness was determined using intra-arterial tyramine. FBF and FVC were substantially lower during hyperoxic exercise than normoxic exercise (∼20–25%; P < 0.01). At rest, vasoconstriction to tyramine (% decrease from pretyramine values) did not differ between normoxia and hyperoxia ( P > 0.05). During exercise, vasoconstrictor responsiveness was slightly greater during hyperoxia than normoxia (−22 ± 3 vs. −17 ± 2%; P < 0.05). However, during α-adrenergic blockade, hyperoxic exercise FBF and FVC remained lower than during normoxia ( P < 0.01). Therefore, our data suggest that although the vasoconstrictor responsiveness during hyperoxic exercise was slightly greater, it likely does not explain the majority of the large reductions in FBF and FVC (∼20–25%) during hyperbaric hyperoxic exercise.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3