Muscle creatine uptake and creatine transporter expression in response to creatine supplementation and depletion

Author:

Brault Jeffrey J.1,Abraham Kirk A.1,Terjung Ronald L.1

Affiliation:

1. Department of Physiology, College of Medicine, Department of Biomedical Sciences, College of Veterinary Medicine, and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211

Abstract

The total creatine pool size [Crtotal; creatine (Cr) + phosphocreatine (PCr)] is crucial for optimal energy utilization in skeletal muscle, especially at the onset of exercise and during intense contractions. The Crtotal likely is controlled by long-term modulation of Cr uptake via the sodium-dependent Cr transporter (CrT). To test this hypothesis, adult male Sprague-Dawley rats were fed 1% Cr, their muscle Crtotal was reduced by ∼85% [1% β-guanidinoproprionic acid (β-GPA)], or their muscle Crtotal was repleted (1% Cr after β-GPA depletion). Cr uptake was assessed by skeletal muscle 14C-Cr accumulation to Cr and PCr by using hindlimb perfusion, and CrT protein content was assessed by Western blot. Cr uptake rate decreased with dietary Cr supplementation in the white gastrocnemius (WG; 45%) only. Depletion of muscle Crtotal to ∼15% of normal increased Cr uptake in the soleus (21%) and red gastrocnemius (22%), corresponding to 70–150% increases in muscle CrT content. In contrast, the inherently lower Cr uptake rate in the WG was unchanged with depletion of muscle Crtotal even though CrT band density was increased by 230%. Thus there was no direct relationship between apparent muscle CrT abundance and Cr uptake rates. However, Cr uptake rates scaled inversely with decreases in muscle Crtotal in the high-oxidative muscle types but not in the WG. This implies that factors controlling Cr uptake are different among fiber types. These observations may help explain the influence of initial muscle Crtotal, time dependency, and variations in muscle Crtotal accumulation during Cr supplementation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3