Extracellular matrix (ECM) microstructural composition regulates local cell-ECM biomechanics and fundamental fibroblast behavior: a multidimensional perspective

Author:

Pizzo A. M.,Kokini K.,Vaughn L. C.,Waisner B. Z.,Voytik-Harbin S. L.

Abstract

The extracellular matrix (ECM) provides the principal means by which mechanical information is communicated between tissue and cellular levels of function. These mechanical signals play a central role in controlling cell fate and establishing tissue structure and function. However, little is known regarding the mechanisms by which specific structural and mechanical properties of the ECM influence its interaction with cells, especially within a tissuelike context. This lack of knowledge precludes formulation of biomimetic microenvironments for effective tissue repair and replacement. The present study determined the role of collagen fibril density in regulating local cell-ECM biomechanics and fundamental fibroblast behavior. The model system consisted of fibroblasts seeded within collagen ECMs with controlled microstructure. Confocal microscopy was used to collect multidimensional images of both ECM microstructure and specific cellular characteristics. From these images temporal changes in three-dimensional cell morphology, time- and space-dependent changes in the three-dimensional local strain state of a cell and its ECM, and spatial distribution of β1-integrin were quantified. Results showed that fibroblasts grown within high-fibril-density ECMs had decreased length-to-height ratios, increased surface areas, and a greater number of projections. Furthermore, fibroblasts within low-fibril-density ECMs reorganized their ECM to a greater extent, and it appeared that β1-integrin localization was related to local strain and ECM remodeling events. Finally, fibroblast proliferation was enhanced in low-fibril-density ECMs. Collectively, these results are significant because they provide new insight into how specific physical properties of a cell’s ECM microenvironment contribute to tissue remodeling events in vivo and to the design and engineering of functional tissue replacements.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3